Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Virus Res ; 345: 199371, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38621598

RESUMO

BACKGROUND: The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has lasted for three years. Coinfection with seasonal influenza may occur resulting in more severe diseases. The interaction between these two viruses for infection and the effect of antiviral treatment remains unclear. METHODS: A SARS-CoV-2 and influenza H1N1 coinfection model on Calu-3 cell line was established, upon which the simultaneous and sequential coinfection was evaluated by comparing the viral load. The efficacy of molnupiravir and baloxavir against individual virus and coinfection were also studied. RESULTS: The replication of SARS-CoV-2 was significantly interfered when the influenza virus was infected simultaneously or in advance (p < 0.05). On the contrary, the replication of the influenza virus was not affected by the SARS-CoV-2. Molnupiravir monotherapy had significant inhibitory effect on SARS-CoV-2 when the concentration reached to 6.25 µM but did not show any significant anti-influenza activity. Baloxavir was effective against influenza within the dosage range and showed significant effect of anti-SARS-CoV-2 at 16 µM. In the treatment of coinfection, molnupiravir had significant effect for SARS-CoV-2 from 6.25 µM to 100 µM and inhibited H1N1 at 100 µM (p < 0.05). The tested dosage range of baloxavir can inhibit H1N1 significantly (p < 0.05), while at the highest concentration of baloxavir did not further inhibit SARS-CoV-2, and the replication of SARS-CoV-2 significantly increased in lower concentrations. Combination treatment can effectively inhibit influenza H1N1 and SARS-CoV-2 replication during coinfection. Compared with molnupiravir or baloxavir monotherapy, combination therapy was more effective in less dosage to inhibit the replication of both viruses. CONCLUSIONS: In coinfection, the replication of SARS-CoV-2 would be interfered by influenza H1N1. Compared with molnupiravir or baloxavir monotherapy, treatment with a combination of molnupiravir and baloxavir should be considered for early treatment in patients with SARS-CoV-2 and influenza coinfection.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38438592

RESUMO

Clinical studies have shown that the mediodorsal thalamus (MD) may play an important role in the development of depression. However, the molecular and circuit mechanisms by which the mediodorsal thalamus (MD) participates in the pathological processes of depression remain unclear. Here, we show that in male chronic social defeat stress (CSDS) mice, the calcium signaling activity of glutamatergic neurons in MD is reduced. By combining conventional neurotracer and transneuronal virus tracing techniques, we identify a synaptic circuit connecting MD and medial prefrontal cortex (mPFC) in the mouse. Brain slice electrophysiology and fiber optic recordings reveal that the reduced activity of MD glutamatergic neurons leads to an excitatory-inhibitory imbalance of pyramidal neurons in mPFC. Furthermore, activation of MD glutamatergic neurons restores the electrophysiological properties abnormal in mPFC. Optogenetic activation of the MD-mPFC circuit ameliorates anxiety and depression-like behaviors in CSDS mice. Taken together, these data support the critical role of MD-mPFC circuit on CSDS-induced depression-like behavior and provide a potential mechanistic explanation for depression.

3.
Transl Psychiatry ; 14(1): 149, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493173

RESUMO

Chronic stress-induced anxiodepression is a common health problem, however its potential neurocircuitry mechanism remains unclear. We used behavioral, patch-clamp electrophysiology, chemogenetic, and optogenetic approaches to clarify the response of the lateral hypothalamus (LH) and the medial prefrontal cortex (mPFC) to stress, confirmed the structural connections between the LH and mPFC, and investigated the role of the LH-mPFC pathway in chronic stress-induced anxiodepression symptoms. Unpredictable chronic mild stress (UCMS) caused anxiodepression-like behaviors, including anxiety, anhedonia, and despair behaviors. We discovered that the activity of the LH and mPFC was both increased after restraint stress (RS), a stressor of UCMS. Then we found that the orexinergic neurons in the LH predominantly project to the glutamatergic neurons in the mPFC, and the excitability of these neurons were increased after UCMS. In addition, overactivated LH orexinergic terminals in the mPFC induced anhedonia but not anxiety and despair behaviors in naive mice. Moreover, chemogenetically inhibited LH-mPFC orexinergic projection neurons and blocked the orexin receptors in the mPFC alleviated anhedonia but not anxiety and despair behaviors in UCMS-treated mice. Our study identified a new neurocircuit from LH orexinergic neurons to mPFC and revealed its role in regulating anhedonia in response to stress. Overactivation of LHOrx-mPFC pathway selectively mediated chronic stress-induced anhedonia. In normal mice, the LHOrx-mPFC pathway exhibits relatively low activity. However, after chronic stress, the activity of orexinergic neuron in LH is overactivated, leading to an increased release of orexin into the mPFC. This heightened orexin concentration results in increased excitability of the mPFC through OX1R and OX2R, consequently triggering anhedonia.


Assuntos
Anedonia , Região Hipotalâmica Lateral , Camundongos , Animais , Região Hipotalâmica Lateral/metabolismo , Orexinas/metabolismo , Ansiedade , Córtex Pré-Frontal/metabolismo
4.
Heliyon ; 10(3): e25642, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38356529

RESUMO

Vibrio parahaemolyticus is a significant cause of foodborne illness, and its incidence worldwide is on the rise. It is thus imperative to develop a straightforward and efficient method for typing strains of this pathogen. In this study, we conducted a pangenome analysis of 75 complete genomes of V. parahaemolyticus and identified the core gene mtlA with the highest degree of variation, which distinguished 44 strains and outperformed traditional seven-gene-based MLST when combined with aer, another core gene with high degree of variation. The mtlA gene had higher resolution to type strains with a close relationship compared to the traditional MLST genes in the phylogenetic tree built by core genomes. Strong positive selection was also detected in the gene mtlA (ω > 1), representing adaptive and evolution in response to the environment. Therefore, the panel of gene mtlA and aer may serve as a tool for the typing of V. parahaemolyticus, potentially contributing to the prevention and control of this foodborne disease.

5.
J Med Virol ; 95(11): e29222, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37964661

RESUMO

The ongoing coronavirus disease 2019 (COVID-19) pandemic, driven by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), highlights the critical role of genomic surveillance in tracking rapidly spreading viruses and their evolving lineages. The emergence of the SARS-CoV-2 tiling array, a comprehensive tool capable of capturing the entire viral genome, has presented a promising avenue for variants. This study introduces the SARS-CoV-2 tiling array as a novel method for port inspection. Using next-generation sequencing as a benchmark, 35 positive samples underwent sequencing through both methodologies, including the Alpha variant (B.1.1.7), Delta variants (AY.120, AY.122, AY.23.1), and Omicron variants (BA.1, BA.2, BA.2.75, BA.4, BA.5, BE.1, BF.7, BN.1, BQ.1, XBB.1) within the sample set. The whole-genome tiling array demonstrated successful identification of various sublineages of SARS-CoV-2. The average sequencing coverage rates were 99.22% (96.82%-99.92%) for the whole-genome tiling array and 98.56% (92.81%-99.59%) for Illumina sequencing, respectively. The match rates of these two methods ranged from 92.81%-99.59%, with an average rate of 98.56%. Among the benefits of the whole-genome tiling array are its cost-effectiveness and equipment simplification, making it particularly suitable for identifying SARS-CoV-2 variants in the front-line inspection department. The aforementioned findings provide valuable insights into the surveillance of COVID-19 and present a pragmatic solution for improving quarantine measures at entry points.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , COVID-19/epidemiologia , China/epidemiologia , Genoma Viral
6.
Front Public Health ; 11: 1172663, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37033020

RESUMO

[This corrects the article DOI: 10.3389/fpubh.2022.892468.].

7.
Mol Neurobiol ; 60(4): 2277-2294, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36645630

RESUMO

Hepatic encephalopathy (HE) is a nervous system disease caused by severe liver diseases and different degrees of learning and memory dysfunction. Long non-coding RNA (lncRNA) is highly expressed in the brain and plays important roles in central nervous system diseases like Alzheimer's disease. In the present work, we found that the expression of lnc240 in the hippocampus of HE mice was significantly downregulated, but its pathogenesis in HE has not been clarified. This study aimed to explore the effects of lnc240 on the cognitive function of HE. The expression of lnc240, miR-1264-5p, and MEF2C was analyzed with RNA-seq and further determined by qRT-PCR in HE mouse. Double luciferase reporter gene testing confirmed the relationship between lnc240, MEF2C, and miR-1264-5p. The functional role of lnc240 and MEF2C in vitro and in vivo was evaluated by qRT-PCR, western blot analysis, immunofluorescence staining, Golgi staining, electrophysiology, and Morris water maze. The expression of lnc240 was decreased in HE mice. The overexpression of lnc240 could significantly downregulate miR-1264-5p and upregulate MEF2C, also increasing the amplitude and frequency of mEPSC in primary cultured hippocampal neurons. The overexpression of miR-1264-5p reversed the effect of lnc240 on MEF2C. Moreover, in vivo experiments have shown that the overexpression of lnc240 could improve HE mice's spatial learning and memory functions. Golgi staining suggested that overexpression of lnc240 could increase the density and maturity of dendritic spines in hippocampal neurons of HE mice. Lnc240 can regulate the expression of MEF2C through miR-1264-5p and regulate the synaptic plasticity of hippocampal neurons, thereby saving the learning and memory dysfunction in HE mice, suggesting that lnc240 might be a potential therapeutic target for the treatment of HE.


Assuntos
Doença de Alzheimer , Encefalopatia Hepática , MicroRNAs , RNA Longo não Codificante , Camundongos , Animais , MicroRNAs/genética , Aprendizagem em Labirinto , RNA Longo não Codificante/genética , Fatores de Transcrição MEF2
8.
Clin Infect Dis ; 76(3): e216-e226, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35762834

RESUMO

BACKGROUND: Early antiviral therapy was effective in the treatment of coronavirus disease 2019 (COVID-19). We assessed the efficacy and safety of combined interferon beta-1b and remdesivir treatment in hospitalized COVID-19 patients. METHODS: We conducted a multicentre, prospective open-label, randomized-controlled trial involving high-risk adults hospitalized for COVID-19. Patients were randomly assigned to a 5-day interferon beta-1b 16 million units daily and remdesivir 200 mg loading on day 1 followed by 100 mg daily on day 2 to 5 (combination group), or to remdesivir only of similar regimen (control group) (1:1). The primary endpoint was the time to complete alleviation of symptoms (NEWS2 = 0). RESULTS: Two-hundred and twelve patients were enrolled. The median days of starting treatment from symptom onset was 3 days. The median age was 65 years, and 159 patients (75%) had chronic disease. The baseline demographics were similar. There was no mortality. For the primary endpoint, the combination group was significantly quicker to NEWS2 = 0 (4 vs 6.5 days; hazard ratio [HR], 6.59; 95% confidence interval [CI], 6.1-7.09; P < .0001) when compared to the control group. For the secondary endpoints, the combination group was quicker to negative nasopharyngeal swab (NPS) viral load (VL) (6 vs 8 days; HR, 8.16; 95% CI, 7.79-8.52; P < .0001) and to develop seropositive immunoglobulin G (IgG) (8 vs 10 days; HR, 10.78; 95% CI, 9.98-11.58; P < .0001). All adverse events resolved upon follow-up. Combination group (HR, 4.1 95% CI, 1.9-8.6, P < .0001) was the most significant independent factor associated with NEWS2 = 0 on day 4. CONCLUSIONS: Early treatment with interferon beta-1b and remdesivir was safe and better than remdesivir only in alleviating symptoms, and in shortening viral shedding and hospitalization with earlier seropositivity in high-risk COVID-19 patients. CLINICAL TRIALS REGISTRATION: NCT04647695.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , COVID-19 , Interferon beta-1b , Idoso , Humanos , Antivirais/efeitos adversos , Antivirais/uso terapêutico , COVID-19/terapia , Interferon beta-1b/administração & dosagem , Interferon beta-1b/uso terapêutico , Estudos Prospectivos , SARS-CoV-2 , Resultado do Tratamento
9.
Foods ; 13(1)2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38201156

RESUMO

The prevalence of norovirus in oysters poses a significant threat to food safety, necessitating a comprehensive understanding of contamination patterns. This study explores the temporal dynamics of norovirus distribution in various oyster tissues over a contamination period ranging from 6 to 96 h. Four tissues-the gill, palp, digestive gland, and stomach-were subjected to systematic monitoring using RT-qPCR for absolute quantification. Results revealed rapid norovirus detection in all tissues six hours post-contamination, with subsequent variations in detection rates. Gill and digestive gland tissues exhibited a peak in detection at 12-24 h, aligning with the oyster's gastrointestinal circulatory system. The digestive gland, distinguished by specific enrichment and adsorption capabilities, demonstrated the highest virus concentration at 48 h. In contrast, the stomach displayed a reemergence of norovirus. Beyond 72 h, detection remained exclusive to the digestive gland, with Ct values comparable to earlier time points. At 96 h, a limited amount of norovirus was detected in the digestive gland, emphasizing the importance for timely monitoring. In addition to providing critical insights into optimal detection strategies, these findings highlight the time-related characteristics of norovirus contamination in oysters. The study identifies the digestive gland as a key target for reliable monitoring, providing valuable data to improve protocols for reducing hazards associated with oyster consumption and foodborne norovirus infections. This research contributes to the understanding of norovirus dynamics in oyster tissues and reinforces current efforts aimed at ensuring food safety and public health.

10.
mSphere ; 7(2): e0091521, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35285250

RESUMO

COVID-19 infection is a global health issue, and vaccination is the main strategy to control this pandemic. In this study, 189 participants received BNT162b2 or CoronaVac vaccine, and 133 of them recorded adverse events (AEs) daily for 4 weeks after vaccination. Their neutralizing antibody against SARS-CoV-2 was determined with live virus microneutralization (vMN) assay. The vMN geometric mean titer (GMT) on day 56 was 129.9 (95% confidence interval [CI],108.6 to 155.2) in the BNT162b2 group and 13.1 (95% CI, 11.2 to 15.3) in the CoronaVac group. Day 56 vMN GMT was 147.9 (95% CI, 118.9 to 184.1) in females and 129.9 (95% CI, 108.6 to 155.2) in males receiving BNT162b2, while it was 14.0 (95% CI, 11.6 to 17.0) in females and 11.4 (95% CI, 8.7 to 15.0) in males receiving CoronaVac. Injection site pain (88.8%) and redness (77.5%) were the most commonly BNT162b2-related AEs, and injection site pain (37.7%) and tiredness (26.4%) were more frequent in the CoronaVac group. Women showed a higher frequency of headache (45.7% versus 29.4%) and joint pain (26.1 versus 14.7%) than men in BTN162b2 group. Headache (26.5% versus 0%) and tiredness (38.2% versus 5.3%) were more common in women than in men vaccinated with CoronaVac. No correlation between any AE and antibody response was observed in BNT162b2 or CoronaVac platforms. After taking the gender factor into account, in the BNT162b2 group, a low correlation between day 21 vMN titer and redness (rho = 0.34) or itching (rho = 0.32) was presented in females, and a low correlation between day 56 vMN titer and fever (rho = 0.35) was presented in males. Taken together, AEs could have a low correlation with BNT162b2 vaccine response. IMPORTANCE Effective vaccines against SARS-CoV-2 are vital tools for containing the COVID-19 pandemic by increasing population immunity. While currently available vaccines can elicit antibody response against SARS-CoV-2 with high efficacy, the associated side effects may cause vaccine hesitancy. Our work is important in that we have thoroughly analyzed the correlation between immunogenicity and reactogenicity of two COVID-19 vaccines (BNT162b2 and CoronaVac) in the study. Our results showed that women had higher levels of neutralizing antibodies than men after receiving BNT162b2 or CoronaVac. Furthermore, a low correlation was observed between day 21 vMN titer and local reactions (redness and itching) in females, as well as between day 56 vMN titer and fever in males receiving BNT162b2. Thus, common side effects are not always a negative impact of vaccination but may serve as an indicator of immunogenicity of vaccines. Our study may help in increasing the public's acceptance and confidence over COVID-19 vaccination and ultimately achieving the goal of containing COVID-19 pandemic.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacina BNT162 , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Feminino , Cefaleia , Humanos , Masculino , Dor , Pandemias , Prurido , SARS-CoV-2
11.
Microbiol Spectr ; 10(2): e0099321, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35254121

RESUMO

Detection and tracking of antibodies play an increasingly prominent role in population surveillance and implementation of public health measures to combat the current coronavirus disease 2019 (COVID-19) pandemic, with much attention placed on developing commercial serological assays as point-of-care diagnostic tools. While many rapid diagnostic tests (RDTs) that detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) IgG and IgM antibodies have been evaluated, there is currently limited insight into detection of neutralizing antibodies (nAbs) by such modalities. Here, we evaluate performance characteristics of an RDT that detects SARS-CoV-2 IgG antibodies and, importantly, nAbs based on both infection- and vaccine-immunized cohorts by direct comparison to known antibody titers obtained from live virus microneutralization (VMN) assays. We further contextualize interpretations of band intensity of the RDT with reference to the World Health Organization (WHO) International Standard. We report a sensitivity of 94.37% and specificity of 92.50% for SARS-CoV-2 IgG detection and a sensitivity of 94.37% and specificity of 92.68% for nAbs. A limit of detection was determined as 3.125 IU/mL and 25.00 IU/mL, respectively, with reference to the WHO International Standard. We confirm that indication of nAb concentration, as elucidated by band intensity on the RDT, correlated with nAb titers defined by VMN assays and surrogate nAb assays. We additionally observe no cross-reactivity of the nAb test line to SARS-CoV-1 but report display of weak seropositivity for one sample on the SARS-CoV-2 IgG test line. Our study reveals promising performance characteristics of the assessed RDT, which implicates its usefulness in a wide range of diagnostic and epidemiological settings. IMPORTANCE In the ongoing coronavirus disease 2019 (COVID-19) pandemic, antibody tests play an increasingly important role in detecting previous infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and monitoring of response to vaccinations. In particular, neutralizing antibodies have recently been demonstrated to be highly predictive of immune protection against symptomatic infection. Our study is the first to evaluate a rapid diagnostic test based on samples acquired from both recovered COVID-19 patients and individuals vaccinated for SARS-CoV-2, which detects neutralizing antibodies in addition to SARS-CoV-2 IgG. We report promising sensitivity, specificity, and cross-reactivity profiles, which implicate its usefulness in a wide range of settings as a diagnostic point-of-care tool to aid in curbing transmission and reducing mortality caused by COVID-19 symptoms.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/diagnóstico , Humanos , Imunoglobulina G , Sistemas Automatizados de Assistência Junto ao Leito , Testes Imediatos
12.
Vaccines (Basel) ; 10(2)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35214619

RESUMO

By vaccinating SARS-CoV-2 naïve individuals who have already received two doses of COVID-19 vaccines, we aimed to investigate whether a heterologous prime-boost strategy, using vaccines of different platforms as the booster dose, can enhance the immune response against SARS-CoV-2 virus variants. Participants were assigned into four groups, each receiving different combination of vaccinations: two doses of BNT162b2 followed by one dose of BNT162b2 booster (B-B-B); Combination of BNT162b2 (first dose) and CoronaVac (second dose) followed by one dose of BNT162b2 booster (B-C-B); two doses of CoronaVac followed by one dose of CoronaVac booster (C-C-C); two doses of CoronaVac followed by one dose of BNT162b2 booster (C-C-B). The neutralizing antibody in sera against the virus was determined with live virus microneutralization assay (vMN). The B-B-B group and C-C-B group demonstrated significantly higher immunogenicity against SARS-CoV-2 Wild type (WT), Beta variant (BV) and Delta variant (DV). In addition, the B-B-B group and C-C-B group showed reduced but existing protection against Omicron variant (OV). Moreover, A persistent rise in vMN titre against OV was observed 3 days after booster dose. Regarding safety, a heterologous prime-boost vaccine strategy is well tolerated. In this study, it was demonstrated that using vaccines of different platforms as booster dose can enhance protection against SARS-CoV-2 variants, offering potent neutralizing activity against wild-type virus (WT), Beta variant (BV), Delta variant (DV) and some protection against the Omicron variant (OV). In addition, a booster mRNA vaccine results in a more potent immune response than inactivated vaccine regardless of which platform was used for prime doses.

13.
Vaccines (Basel) ; 10(1)2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-35062734

RESUMO

The emergence of SARS-CoV-2 variants may impact the effectiveness of vaccines, while heterologous vaccine strategy is considered to provide better protection. The immunogenicity of an mRNA-inactivated virus vaccine against the SARS-CoV-2 wild-type (WT) and variants was evaluated in the study. SARS-CoV-2 naïve adults (n = 123) were recruited and placed in the following groups: BNT162b2, CoronaVac or BNT162b2-CoronaVac (Combo) Group. Blood samples were collected to measure neutralization antibodies (NAb) by a live virus microneutralization assay (vMN) and surrogate NAb test. The day 56 vMN geometric mean titre (GMT) was 26.2 [95% confident interval (CI), [22.3-30.9] for Combo, 136.9 (95% CI, 104.2-179.7) for BNT162b2, and 14.7 (95% CI, 11.6-18.6) for CoronaVac groups. At 6 months post-first dose, the GMT declined to 8.0, 28.8 and 7.1 in the Combo, BNT162b2 and CoronaVac groups, respectively. Three groups showed reduced neutralizing activity against D614G, beta, theta and delta variants. At day 56 GMT (74.6) and month 6 GMT (22.7), the delta variant in the BNT162b2 group was higher than that in the Combo (day 56, 7.4; month 6, 5.5) and CoronaVac groups (day 56, 8.0; month 6, 5) (p < 0.0001). Furthermore, the mean surrogate NAb value on day 56 in the BNT162b2 group was 594.7 AU/mL and higher than 40.5 AU/mL in Combo and 38.8 AU/mL in CoronaVac groups (p < 0.0001). None of the participants developed severe adverse events, and all other adverse events were self-limiting. The Combo vaccination strategy was safe. The overall vaccine immunogenicity at day 56 and 6 months were comparable to the homologous CoronaVac group but inferior to the homologous BNT162b2 group, against both the WT and all variants. Furthermore, the antibody response of vaccines waned at 6 months and thereby, a third dose of the vaccine is needed for these vaccines.

14.
Front Public Health ; 10: 892468, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36684855

RESUMO

Background: Multifarious factors have a causal relationship with gastric cancer (GC) development. We conducted a comprehensive analysis to evaluate the strength of the evidence examining non-genetic risk factors for gastric cancer. Methods: PubMed, Web of Science, and the Cochrane Library were searched from inception to November 10, 2021 to identify meta-analyses of observational studies examining the association between environmental factors and GC risk. For each meta-analysis, the random effect size, 95% confidence interval, heterogeneity among studies, and evidence of publication bias were assessed; moreover, the evidence was graded using predefined criteria, and the methodological quality was evaluated using AMSTAR 2. Results: A total of 137 associations were examined in 76 articles. Among these meta-analyses, 93 associations yielded significant estimates (p < 0.05). Only 10 associations had strong epidemiologic evidence, including 2 risk factors (waist circumference and bacon), and 8 protective factors (dietary total antioxidant capacity, vegetable fat, cruciferous vegetable, cabbage, total vitamin, vitamin A, vitamin C, and years of fertility); 26 associations had moderate quality of evidence; and the remaining 57 associations were rated as weak. Ninety-four (68.61%) associations showed significant heterogeneity. Twenty-five (18.25%) associations demonstrated publication bias. Conclusions: In this comprehensive analysis, multiple associations were found between environmental factors and GC with varying levels of evidence. Healthy dietary habits and lifestyle patterns could reduce the risk for GC. However, further high-quality prospective studies are still necessary to draw more definitive conclusions.


Assuntos
Neoplasias Gástricas , Humanos , Dieta , Comportamento Alimentar , Estudos Prospectivos , Fatores de Risco , Neoplasias Gástricas/epidemiologia , Neoplasias Gástricas/etiologia , Estudos Observacionais como Assunto
15.
Arch Virol ; 167(1): 249-253, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34718885

RESUMO

Norovirus is recognized as one of the leading causes of acute gastroenteritis outbreaks. Genotype GII.9 was first detected in Norfolk, VA, USA, in 1997. However, the complete genome sequence of this genotype has not yet been determined. In this study, a complete genome sequence of GII.9[P7] norovirus, SCD1878_GII.9[P7], from a patient was determined using high-throughput sequencing and rapid amplification of cDNA ends (RACE) technology. The complete genome sequence of SCD1878_GII.9[P7] is 7544 nucleotides (nt) in length with a 3' poly(A) tail and contains three open reading frames. Sequence comparisons indicated that SCD1878_GII.9[P7] shares 92.1%-92.3% nucleotide sequence identity with GII.P7 (AB258331 and AB039777) and 96.7%-97.4% identity with GII.9 (AY038599 and DQ379715). The results suggested that SCD1878_GII.9[P7] is a member of P genotype GII.P7 and G genotype GII.9. This viral sequence fills a gap at the whole-genome level for the GII.9 genotype.


Assuntos
Infecções por Caliciviridae , Gastroenterite , Norovirus , Infecções por Caliciviridae/epidemiologia , Fezes , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Norovirus/genética , Filogenia , RNA Viral/genética
16.
Diagnostics (Basel) ; 11(12)2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34943583

RESUMO

Immunofluorescence is a traditional diagnostic method for respiratory viruses, allowing rapid, simple and accurate diagnosis, with specific benefits of direct visualization of antigens-of-interest and quality assessment. This study aims to evaluate the potential of indirect immunofluorescence as an in-house diagnostic method for SARS-CoV-2 antigens from nasopharyngeal swabs (NPS). Three primary antibodies raised from mice were used for immunofluorescence staining, including monoclonal antibody against SARS-CoV nucleocapsid protein, and polyclonal antibodies against SARS-CoV-2 nucleocapsid protein and receptor-binding domain of SARS-CoV-2 spike protein. Smears of cells from NPS of 29 COVID-19 patients and 20 non-infected individuals, and cells from viral culture were stained by the three antibodies. Immunofluorescence microscopy was used to identify respiratory epithelial cells with positive signals. Polyclonal antibody against SARS-CoV-2 N protein had the highest sensitivity and specificity among the three antibodies tested, detecting 17 out of 29 RT-PCR-confirmed COVID-19 cases and demonstrating no cross-reactivity with other tested viruses except SARS-CoV. Detection of virus-infected cells targeting SARS-CoV-2 N protein allow identification of infected individuals, although accuracy is limited by sample quality and number of respiratory epithelial cells. The potential of immunofluorescence as a simple diagnostic method was demonstrated, which could be applied by incorporating antibodies targeting SARS-CoV-2 into multiplex immunofluorescence panels used clinically, such as for respiratory viruses, thus allowing additional routine testing for diagnosis and surveillance of SARS-CoV-2 even after the epidemic has ended with low prevalence of COVID-19.

17.
Vaccines (Basel) ; 9(12)2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34960189

RESUMO

Vaccinating recovered patients previously infected by COVID-19 with mRNA vaccines to boost their immune response against wild-type viruses (WT), we aimed to investigate whether vaccine platform and time of vaccination affect immunogenicity against the SARS-CoV-2 WT and Delta variant (DV). Convalescent patients infected by COVID-19 were recruited and received one booster dose of the BNT162b2 (PC-B) or CoronaVac (PC-C) vaccines, while SARS-CoV-2 naïve subjects received two doses of the BNT162b2 (CN-B) or CoronaVac (CN-C) vaccines. The neutralizing antibody in sera against the WT and DV was determined with live virus neutralization assay (vMN). The vMN geometric mean titre (GMT) against WT in recovered individuals previously infected by COVID-19 reduced significantly from 60.0 (95% confidence interval (CI), 46.5-77.4) to 33.9 (95% CI, 26.3-43.7) at 6 months post recovery. In the PC-B group, the BNT162b2 vaccine enhanced antibody response against WT and DV, with 22.3-fold and 20.4-fold increases, respectively. The PC-C group also showed 1.8-fold and 2.2-fold increases for WT and DV, respectively, after receiving the CoronaVac vaccine. There was a 10.6-fold increase in GMT in the CN-B group and a 1.3-fold increase in the CN-C group against DV after full vaccination. In both the PC-B and PC-C groups, there was no difference between GMT against WT and DV after vaccination. Subjects in the CN-B and CN-C groups showed inferior GMT against DV compared with GMT against WT after vaccination. In this study, one booster shot effectively enhanced the pre-existing neutralizing activity against WT and DV in recovered subjects.

18.
Diagnostics (Basel) ; 11(10)2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34679455

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-neutralizing antibody (NAb) production is a crucial humoral response that can reduce re-infection or breakthrough infection. The conventional test used to measure NAb production capacity levels is the live virus-neutralizing assay. However, this test must be conducted under biosafety level-3 containment. Pseudovirus or surrogate NAb tests, such as angiotensin-converting enzyme 2 inhibition tests, can be performed under level-2 containment. The aim of this study was to evaluate the performance of a surrogate SARS-CoV-2 NAb assay (sNAb) using samples from naturally infected individuals and vaccine recipients in comparison with the live virus microneutralization assay (vMN). Three hundred and eighty serum samples which were collected from 197 patients with COVID-19, 96 vaccine recipients and 84 normal individuals were analyzed. Overall, the sensitivity, specificity, positive predictive value, and negative predictive value of the sNAb (iFlash-2019-NAb assay, Shenzhen, China) were 97.9%, 94.9%, 98.2%, and 93.8%, respectively. Agreement for the assay relative to vMN for naturally infected individuals and vaccine recipients were 98.5% and 93.9%, respectively. A correlation analysis between sNAb and the vMN for both of these groups yielded an R2 value of 0.83. The iFlash RBD NAb assay is found to be sensitive and reliable for neutralizing antibody measurement in patients with the 2019 coronavirus disease and those who have been vaccinated against it.

19.
Appl Environ Microbiol ; 87(18): e0079021, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34232705

RESUMO

Human noroviruses (HuNoVs) are important foodborne pathogens causing acute gastroenteritis. Oysters are an important vehicle for the transmission of HuNoVs. Histo-blood group antigen (HBGA)-like substances are considered the primary ligands for bioaccumulation of HuNoVs in oyster tissues. In this study, proteinaceous ligands for specific binding of HuNoVs were mined from oyster tissues using a bacterial cell surface display system. The macromolecular target was captured and identified in proteomic analysis. The distribution of viral particles, oyster heat shock protein 70 (oHSP 70), and type A HBGA (positive control) in oyster tissue was investigated by multiplex immunofluorescence assays after artificial contamination with HuNoVs (GII.4). Our results demonstrated that oHSP 70 is a candidate vital ligand for specific binding of HuNoVs in oyster tissues. In addition, P proteins (GI.1 and GII.4) and viral particles (GI.1 and GII.4) were captured by recombinant oHSP 70 in an enzyme-linked immunosorbent assay with a sample signal/negative signal of 7.8, 6.3, 17.0, and 8.8, respectively. The findings suggested that oHSP 70 plays an important role in the binding of these foodborne viruses. IMPORTANCE Human noroviruses (HuNoVs) are the most important pathogen for nonbacterial epidemic gastroenteritis cases. Foodborne transmission plays an important role in HuNoVs infection. Oysters, filter-feeding epibenthic bivalves, can be contaminated by fecal discharge in harvest water. A new proteinaceous ligand for HuNoVs other than HBGA is identified in oyster tissues. The significance of our research is in identifying and verifying the ligands in oyster tissues for HuNoV binding. Our data will allow a better understanding of HuNoV attachment in and transmission by oysters, leading to the control of undesired foodborne disease.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Norovirus/patogenicidade , Ostreidae/virologia , Animais , Transmissão de Doença Infecciosa , Contaminação de Alimentos , Doenças Transmitidas por Alimentos , Gastroenterite , Interações entre Hospedeiro e Microrganismos , Humanos , Ligantes , Ostreidae/metabolismo , Ligação Proteica , Virulência
20.
Travel Med Infect Dis ; 43: 102140, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34271206

RESUMO

BACKGROUND: Global mobility of the population has accelerated spread of the Human Norovirus (HuNoV), with long-distance travel in enclosed spaces increasing the opportunity for viral outbreaks. However, surveillance of HuNoV transmission is still lacking, especially in cross-border transportation. METHOD: From 533 self-reported patients, 83 swab samples (15.6%) tested positive for HuNoV by RT-qPCR. Positive samples were sequenced using next-generation sequencing (NGS). Epidemiological investigation and whole genome analysis were then conducted. RESULTS: Most cases occurred in February and March, with large outbreaks involving more than 34 people. A total of 74 HuNoV sequences that could be genotyped were obtained, with near-complete genomes (>7 kb) accounting for most sequences (57/74). A total of 19 different genotypes of viral whole genome sequences were included. The first whole genome sequence of GII.9[P7] was obtained. Rarely reported genotypes including GI.3[P10], GI.3[P13], GII.7[P7], GII.8[P8], and GIX.1[GII.P15] were sequenced and assembled successfully. Four possible sources of virus outbreaks in China were traced. Beyond HuNoV, whole genome sequences of food-borne viruses including Salivirus, Kobuvirus, and Enterovirus were obtained in further assembly. CONCLUSIONS: Surveillance of the etiology and epidemiology of HuNoV global spread through travelers will improve pre-travel health advice, empirical treatment, and estimates of vaccine-preventable diseases.


Assuntos
Norovirus , China/epidemiologia , Genoma Viral , Genótipo , Humanos , Norovirus/genética , RNA Viral/genética , Reação em Cadeia da Polimerase em Tempo Real , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...